offline level2 muon trigger for Run4 fast analysis

- introduction
- principle and cuts
- rejection power
- reconstruction time (level2 vs minimum bias)
- efficiency

Requirements on level2 triggers

- fast (less than 30ms/event) to run online;
- selective, as all trigger do, especially for rare events;
- efficient, not to lose signal;
- work stable in the DAQ; compile under Windows.

Initial plans for RUN4

- validate and re-use RUN2 muid level2 trigger;
- use an additional mutr trigger on top of muid trigger;
- use level2 triggers online to tag events;
- downscale the minimum bias trigger to ensure highest lifetime on level2 triggers.

Present situation

- level2 triggers have not been used online;
- RUN2 muid trigger is used offline for a fast muon analysis, to get fast preliminary results validate/anticipate the minimum bias analysis;
- RUN4 additional mutr trigger is not used.

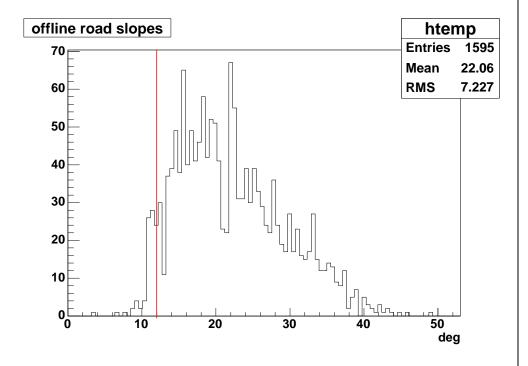
Principle and cuts [I]: Muid level2 trigger

Muid trigger basic tracking

- using OR of tubes in gaps to make *symsets* (groups of tubes)
- using AND of different gaps (same panels) with rough target pointing
- combine horizontal and vertical roads and fit (straight line)

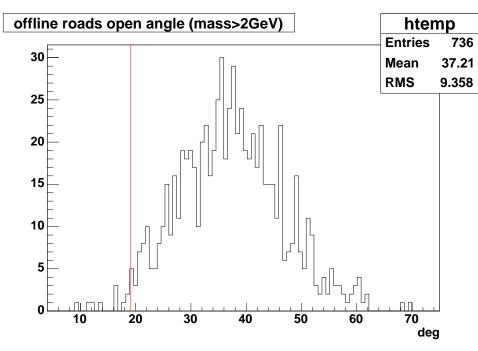
Muid trigger event selection

- keep roads with slope $\geq 12^{\circ}$
- keep events with (at least) two roads with opening angle $\geq 19.2^{\circ}$
- keep events for witch road candidates pass depth selection


shallow shallow	both road depth ≥ 2
deep shallow	one road ≥ 4 the other ≥ 2
deep deep	both road depth ≥ 4

Note: depth counting starts from 0, i.e. first gap = depth 0

• additional cut on #hits/road depending on depth: for deep roads $N_{\rm hits} \geq 8$

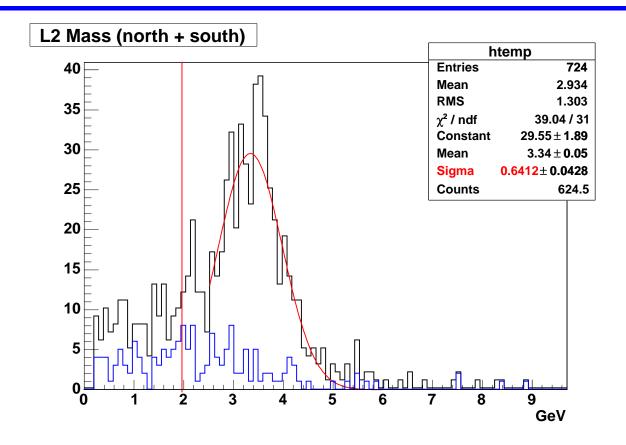

Muid level2 road slopes and open angle on MC

single road slope

road pairs open angle

(in mass window 2 to 5 GeV)

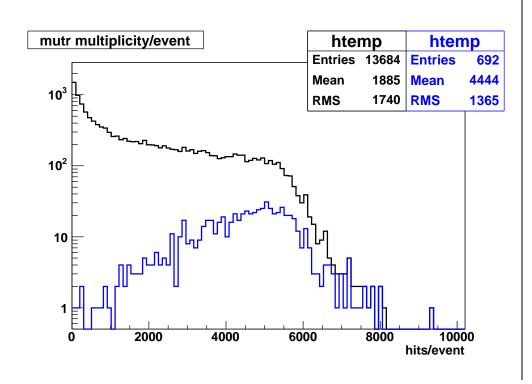
Principle and cuts [II]: Mutr level2 trigger (not used for RUN4)

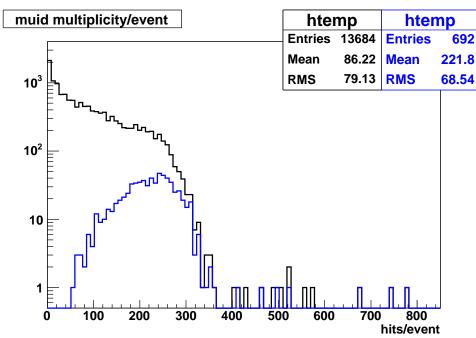

Mutr trigger basic tracking

- extrapolate road to station 3 in mutr, find best matching gap coordinate, if any;
- extrapolate to station 2 in mutr, find best matching gap coordinate, if any;
- use parametrized lookup table to calculate track momentum

Mutr trigger event selection

- select roads matching (θ, ϕ) cuts at stations 2 then station 3;
- \bullet keep events accepted by Muid trigger + calculated mass for dimuon candidates $\geq 2 \text{ GeV}$

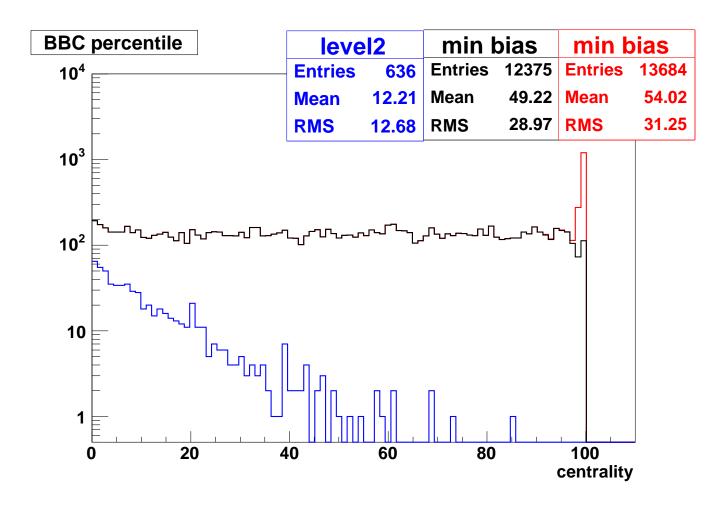

Mutr level2 mass distribution on MC



- Additional time on top of muid trigger: $\sim 5 \text{ms/event}$;
- Additional rejection factor: $\sim \times 2$ wrt muid trigger;
- but no time to get confidence in trigger efficiency on RD.

 \Rightarrow mutr level2 trigger not used for RUN4 fast analysis

What level 2 does to our data [I]: hit multiplicity



black: minimum bias events

blue: level2 filtered events

What level 2 does to our data [II]: recalibrated BBC centrality

(recalibrated from BBC charge distribution @200GeV)

Rejection power and timing

Level2 muid trigger on Run4 real data sample

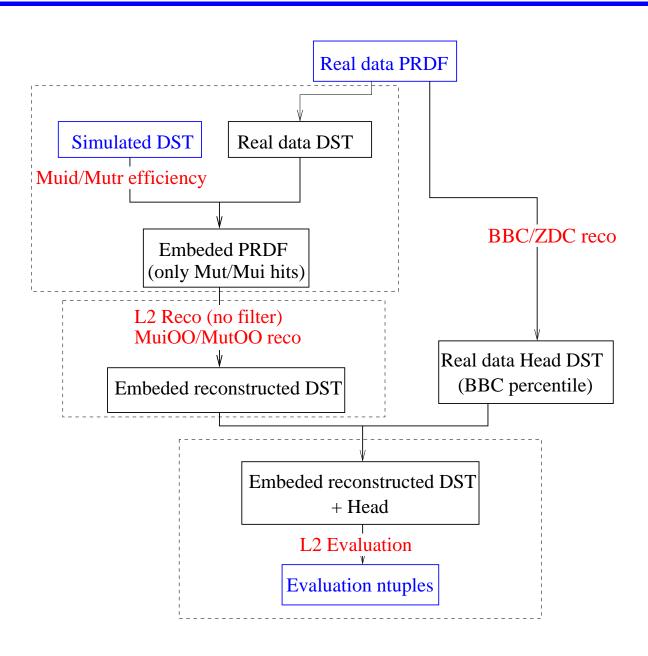
depth	north	south
shallow shallow	4	4
deep shallow	9	9
deep deep	40	36

rejection power =
$$\frac{N_{\text{minbias}}}{N_{\text{L2accepted}}}$$

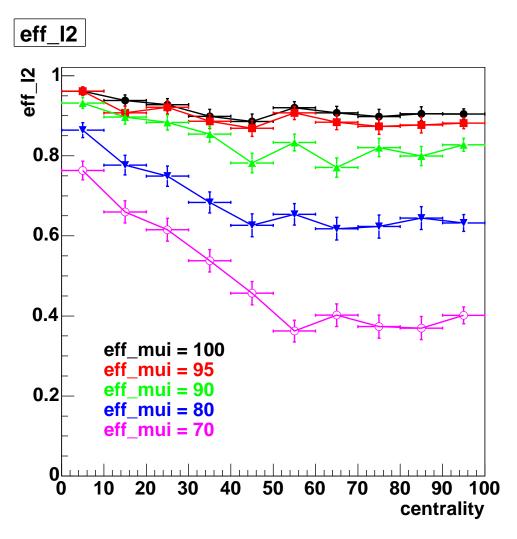
Level2 and offline timing on Run4 realdata sample

	minimum bias	level2 filtered
Average time/event in lvl2 reco	-	51 ms
Average time/event in offline reco	$1200 \mathrm{\ ms}$	5600 ms
Total time for one segment	$1.6 \times 10^7 \text{ ms}$	$3.6 \times 10^6 \text{ ms}$

 \Rightarrow filtered reconstruction \sim 3 to 4 times faster (here 4.4)


Level2 efficiency analysis chain [I]

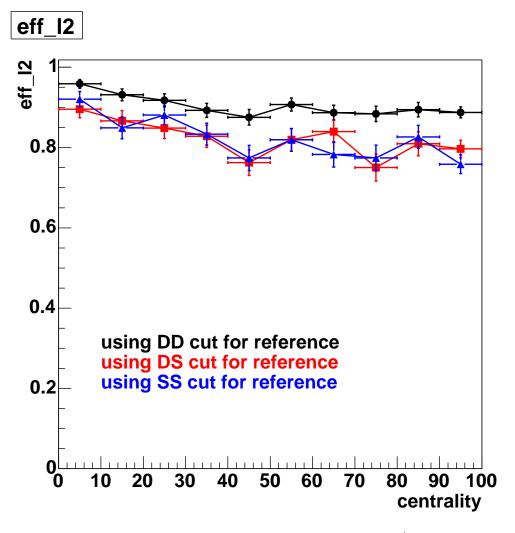
principle


- embed
 - MC J/ ψ signal with realistic muid/mutr efficiencies minimum bias RUN4 real data
- run level2 and offline (MuTOO, MuiOO) reconstruction
- build evaluation ntuples for absolute level2 efficiency level2 efficiency wrt offline

problems/technical issues

- level2 framework runs only on PRDF
- PRDF embedding cannot be done directly in new framework (need DST stage)
- PRDF generation/merging in new framework erase global detectors (BBC)

Level2 efficiency vs muid efficiency



average efficiency:

muid (%)	level2 (%)		
	pure MC	embedded	
100	90	92	
95	87	90	
90	81	84	
80	59	69	
70	35	49	

using 3k Deep-Deep MC J/ ψ embedded in RUN4 real data

Level2 efficiency for realistic RUN4 muid efficiency (run 109656)

muid efficiency/gap:

gap	0	1	2	3	4
south arm	97.5	96.5	96.6	97.1	96.5
north arm	97.5	95.9	95.9	97.2	96.0

average = 96.7 %

average level2 efficiency:

depth cut on MC	level2 (%)
deep deep	90.3
deep shallow	82.0
shallow shallow	81.8

using 3k pythia J/ ψ embedded in RUN4 real data

Level2 efficiency vs offline reconstruction

principle:

- run both level2 and offline reconstruction on all events
- put strict selection on offline to define offline accepted events
- get the fraction of such events accepted by level2

advantage:

- can run both on MC and RD;
- if cuts on offline are strict enough, should give the same result;
- validates MC/embedded studies for *absolute* efficiency.

problems:

- efficiency level vs offline on MC $\sim 95\%$;
- on RD (using same strict cuts) 75 to 80%;
 - \rightarrow low statistic on RD due to strict cuts;
 - \rightarrow unknown amount of remaining ghosts from offline reconstruction.

Conclusion

- overall level2 efficiency:
 - $\sim 90~\%$ for embedded deep deep J/ψ
 - $\sim 82~\%$ for embedded pythia J/ψ
- efficiency increase for central events (random benefit)

Todo:

- understand/fix discrepancy on level2 efficiency vs offline
- include mutr efficiency and run full chain to get combined level2/offline absolute efficiency